摘要

Sparse geometric information from limited field-of-view medical images is often used to reconstruct the femur in biomechanical models of the hip and knee. However, the full femur geometry is needed to establish boundary conditions such as muscle attachment sites and joint axes which define the orientation of joint loads. Statistical shape models have been used to estimate the geometry of the full femur from varying amounts of sparse geometric information. However, the effect that different amounts of sparse data have on reconstruction accuracy has not been systematically assessed. In this study, we compared shape model and linear scaling reconstruction of the full femur surface from varying proportions of proximal and distal partial femur geometry in combination with morphometric and landmark data. We quantified reconstruction error in terms of surface-to-surface error as well as deviations in the reconstructed femur's anatomical coordinate system which is important for biomechanical models. Using a partial proximal femur surface, mean shape model-based reconstruction surface error was 1.8mm with 0.15 degrees or less anatomic axis error, compared to 19.1mm and 2.7-5.6 degrees for linear scaling. Similar results were found when using a partial distal surface. However, varying amounts of proximal or distal partial surface data had a negligible effect on reconstruction accuracy. Our results show that given an appropriate set of sparse geometric data, a shape model can reconstruct full femur geometry with far greater accuracy than simple scaling.

  • 出版日期2017-4