Development of advanced materials for spallation neutron sources and radiation damage simulation based on multi-scale models

作者:Kawai Masayoshi*; Kurishita Hiroaki; Kokawa Hiroyuki; Watanabe Seiichi; Sakaguchi Norihito; Kikuchi Kenji; Saito Shigeru; Yoshiie Toshimasa; Iwase Hiroshi; Ito Takahiro; Hashimoto Satoshi; Kaneko Yoshihisa; Futakawa Masatoshi; Ishino Shiori
来源:Journal of Nuclear Materials, 2012, 431(1-3): 16-25.
DOI:10.1016/j.jnucmat.2011.11.023

摘要

This report describes the status review of the JSPS Grant Team to develop advanced materials for the spallation neutron sources and modeling of radiation damage. One of the advanced materials is a toughness enhanced, fine-grained tungsten material (W-TiC) having four-times larger fracture toughness than ordinary tungsten and appreciable RT ductility in the recrystallized state. The other is an intergranular crack (IGC)-resistant austenitic stainless steel which was processed by the grain-boundary engineering (GBE). The experimental results are devoted to corrosion in a lead-bismuth eutectic, arrest of corrosion of weld-decay, radiation damage and creep rupture as well as new technique of GEE using a laser and annealing procedure. New technique seems to be applicable to large or complicated-shaped components. A series of the multi-scale models is built up from nuclear reaction between incident particles and medium nuclei to material property change due to radiation damage. Sample calculation is made on 3 mm-thick nickel bombarded by 3 GeV protons.

  • 出版日期2012-12