Atomistic Approach toward Selective Photocatalytic Oxidation of a Mustard-Gas Simulant: A Case Study with Heavy-Chalcogen-Containing PCN-57 Analogues

作者:Goswami Subhadip; Miller Claire E; Logsdon Jenna L; Buru Cassandra T; Wu Yi Lin; Bowman David N; Islamoglu Timur; Asiri Abdullah M; Cramer Christopher J; Wasielewski Michael R; Hupp Joseph T; Farha Omar K*
来源:ACS Applied Materials & Interfaces, 2017, 9(23): 19535-19540.
DOI:10.1021/acsami.7b07055

摘要

Here we describe the synthesis of two Zr-based benzothiadiazole- and benzoselenadiazole-containing metalorganic frameworks (MOFs) for the selective photocatalytic oxidation of the mustard gas simulant, 2-chloroethyl ethyl sulfide (CEES). The photophysical properties of the linkers and MOFs are characterized by steady-state absorption and emission, time-resolved emission, and ultrafast transient absorption spectroscopy. The benzoselenadiazole-containing MOF shows superior catalytic activity compared to that containing benzothiadiazole with a half-life of 3.5 min for CEES oxidation to nontoxic 2-chloroethyl ethyl sulfoxide (CEESO). Transient absorption spectroscopy performed on the benzoselenadiazole linker reveals the presence of a triplet excited state, which decays with a lifetime of 9.4 mu s, resulting in the generation of singlet oxygen for photocatalysis. This study demonstrates the effect of heavy chalcogen substitution within a porous framework for the modulation of photocatalytic activity.