摘要

The direct controls of meal size can be categorized into positive signals such as those from the oral cavity and negative signals such as postoral inhibitory cues. It follows that the relative contribution of these signals, and in turn meal pattern parameters, change across periods of high-energy diet exposure. Here, we compared daily intake and meal pattern analysis in male Sprague-Dawley rats presented a high-energy diet for 6 weeks then standard chow for similar to 1 week (HE), with those of standard chow fed controls (CHOW). These measures allow for evaluation of (1) whether there are distinct dynamic and static phases of DIO and if so, how they are characterized, (2) how meal patterns change across short and long term HE experience, and (3) ingestive behavioral changes when HE-fed animals are returned to standard chow. The HE animals showed significantly higher intake primarily driven by an increase in meal size compared to CHOW controls. This was most pronounced during the first several days of high-energy diet exposure thus characterizing the dynamic phase. Intake and meal size decreased with longer exposure to the diet but remained significantly higher than those of CHOW. Increased meal size could be driven by enhanced orosensory stimulation and/or reduced sensitivity to postoral inhibitory feedback. Distribution curves derived from histogram plots of meal size revealed both larger average meal size (right shift) and spread (standard deviation) thus it is tempting to speculate that more than one type of mechanism influences increased meal size. Meal number decreased suggesting post meal inhibitory signaling is relatively intact. However, this increase was insufficient to compensate for the increased meal size. When HE animals were switched to standard chow, daily intake and meal size decreased and eventually returned to values comparable to those of the CHOW rats. Meal number remained lower suggesting altered physiological mechanism(s) that underlie the control of ingestive behavior as a function of previous high-energy diet exposure.

  • 出版日期2014-4-1