Augmented Dynamics and Motor Exploration as Training for Stroke

作者:Huang Felix C*; Patton James L
来源:IEEE Transactions on Biomedical Engineering, 2013, 60(3): 838-844.
DOI:10.1109/TBME.2012.2192116

摘要

With chronic stroke survivors (n = 30), we investigated how upper extremity training with negative viscosity affects coordination under unperturbed conditions. Subjects trained with a planar robotic interface simulating 1) negative viscosity augmented to elbow and shoulder joints; 2) negative viscosity combined with inertia; or 3) a null-field condition. Two treatment groups practiced with both force conditions (cross-over design), while a control group practiced with a null-field condition. Training (exploratory movement) and evaluations (prescribed circular movement) alternated in several phases to facilitate transfer from forces to the null field. Negative viscosity expanded exploration especially in the sagittal axis, and resulted in significant within-day improvements. Both treatment groups exhibited next day retention unobserved in the control. Our results suggest enhanced learning from forces that induce a broader range of kinematics. This study supports the use of robot-assisted training that encourages active patient involvement by preserving efferent commands for driving movement.

全文