摘要

A successful application of self-interference digital holographic microscopy in combination with a sample-rotation-based tomography module for three-dimensional (3-D) label-free quantitative live cell imaging with subcellular resolution is demonstrated. By means of implementation of a hollow optical fiber as the sample cuvette, the observation of living cells in different 3-D matrices is enabled. The fiber delivers a stable and accurate rotation of a cell or cell cluster, providing quantitative phase data for tomographic reconstruction of the 3-D refractive index distribution with an isotropic spatial resolution. We demonstrate that it is possible to clearly distinguish and quantitatively analyze several cells grouped in a %26quot;3-D cluster%26quot; as well as subcellular organelles like the nucleoli and local internal refractive index changes.

  • 出版日期2014-4