摘要

Individual quantum systems may be interacting with surrounding environments having a small number of degrees of freedom. Here we discuss a simple toy model: a system constituted by a two-level atom (atom 1) interacting with a single mode cavity field which is (weakly) coupled to a small environment (atom 2). We investigate the influence of the minimal environment on the dynamics of the linear entropy and the atomic dipole squeezing of atom 1, as well as the entanglement between atom 1 and the field. We also obtain the full analytical solution of the two-atom Tavis-Cummings model for both arbitrary coupling strengths and frequency detunings, necessary to analyse the influence of the field-environment detuning on the evolution of the system's quantum properties. For complementarity, we discuss the role of the degree of mixedness of the environment by analysing the time-averaged linear entropy of atom 1.

  • 出版日期2018