摘要

This paper deals with the small and large amplitude flexural vibrations of anisotropic shear deformable laminated cylindrical shells with piezoelectric fiber reinforced composite (PFRC) actuators in thermal environments. Two kinds of fiber reinforced composite (FRC) laminated shells, namely, uniformly distributed and functionally graded reinforcements, are considered. The motion equations are based on a higher order shear deformation shell theory with a von Karman-type of kinematic nonlinearity and including the extension-twist, extension-flexural and flexural-twist couplings. The thermo-piezoelectric effects are also included, and the material properties of both FRCs and PFRCs are estimated through a micromechanical model and are assumed to be temperature dependent. A boundary layer theory and associated singular perturbation technique are employed to determine the linear and nonlinear frequencies of hybrid laminated cylindrical shells. The numerical illustrations concern the cross-ply and angle-ply laminated cylindrical shells with fully covered or embedded PFRC actuators under different sets of thermal and electric loading conditions. Detailed parametric studies are carried out to investigate effects of material property gradient, temperature variation, applied voltage, shell geometric parameter, stacking sequence, as well as the shell end conditions on the linear and nonlinear vibration characteristics of the hybrid laminated cylindrical shells.