摘要

In the event that pathogens or toxins are introduced to a water distribution system, a utility manager may identify a threat through water quality data or alerts from public health officials. The utility manager may issue water advisories to warn consumers to reduce water use activities. As consumers react and change water demands, dynamic feedbacks among the community, utility managers, and the engineering infrastructure can create unexpected public health consequences and network hydraulics. A Complex Adaptive System (CAS)-based methodology is developed to couple an engineering model of a water distribution system with agent-based models (ABM) of consumers, public health officials, and utility managers to simulate feedback among management decisions, system hydraulics, and public behavior. A utility manager and a public health official are represented as agents, who respond to the event using a set of rules and equations that are based on a statistical analysis of a set of recorded water events. Consumers are represented as agents who update their water activities based on exposure to the contaminant and warnings from a utility agent and family members. A model of consumer compliance is developed using results from two surveys that report data to characterize consumer perceptions toward information sources during a water contamination event. The ABM framework is applied for an illustrative mid-sized virtual city to quantify the significance of interactions and advisories on public health consequences.

  • 出版日期2018-4