Maternal thiamine restriction during lactation induces cognitive impairments and changes in glutamate and GABA concentrations in brain of rat offspring

作者:de Freitas Silva Danielle Marra; Resende Leticia de Souza; Castanheira Pereira Silvia Rejane; Franco Glaura Conceicao; Ribeiro Angela Maria*
来源:Behavioural Brain Research, 2010, 211(1): 33-40.
DOI:10.1016/j.bbr.2010.03.002

摘要

Maternal thiamine deficiency causes changes in cellular energy metabolism that can interfere with offspring brain development. The purpose of the present study was to investigate the effects of thiamine restriction, during lactation, on offspring neurochemistry and cognitive parameters. Male young (31 days old) and adult (75 days old) rats, from control and restricted mothers, were submitted to spatial learning and memory assessment. GABAergic and glutamatergic parameters were measured in thalamus, prefrontal cortex and hippocampus by high performance liquid chromatography (HPLC). The young animals were assessed immediately after thiamine restricted period; the adults, however, underwent a recovery period of 45 days. In young rats, thiamine restriction significantly hindered body weight gain and learning speed; however, it did not affect the brain weight, GABA and glutamate parameters in any of the brain assessed areas. In adult rats the body weight gain was significantly hampered by thiamine restriction, while brain weight and spatial task were not affected. Also, in adult offspring, maternal thiamine restriction significantly decreased the glutamate and GABA contents in the three assessed brain areas and thalamus, respectively. One possible explanation for these findings is that an adjustment of the inhibitory (GABAergic) and stimulatory (glutamatergic) neuromodulation systems occurs, in order to reverse the behavioral deficits detected in young rats but not in adult ones. The present data show, for the first time, that maternal thiamine restriction during lactation induces cognitive impairments and neurochemical changes in offspring, corroborating the important role of thiamine in brain development.

  • 出版日期2010-7-29