摘要

Topology control algorithms allow each node in a wireless multi-hop network to adjust the power at which it makes its transmissions and choose the set of neighbors with which it communicates directly, while preserving global goals such as connectivity or coverage. This allows each node to conserve energy and contribute to increasing the lifetime of the network. In this paper, we consider (i) both the energy costs of communication as well as the amount of available energy at each node, (ii) the realistic situation of varying rates of energy consumption at different nodes, and (iii) the fact that co-operation between nodes, where some nodes make a sacrifice by increasing energy consumption to help other nodes reduce their consumption, can be used to extend network lifetime. This paper introduces a new distributed topology control algorithm, called the Cooperative Topology Control with Adaptation (CTCA), based on a game-theoretic approach that maps the problem of maximizing the network's lifetime into an ordinal potential game. We prove the existence of a Nash equilibrium for the game. Our simulation results indicate that the CTCA algorithm extends the life of a network by more than 50% compared to other algorithms. We also study the performance of the distributed CTCA algorithm in comparison to an optimal centralized algorithm as a function of the communication ranges of nodes and node density.

  • 出版日期2015-7