摘要

Nitric oxide is a frequently encountered pollutant in indoor air. It could have a number of harmful effects on human health even at low concentration. Aiming to improve the indoor air quality, an environment-friendly method was developed for the elimination of nitric oxide at ppm level based on a low temperature effective catalyst potassium-doped copper-manganese oxide (K/Cu-Mn-O). The catalyst was obtained through a co-precipitation method using metal nitrates in aqueous solution and the precipitate was calcinated at 400celcius for 5 h. After impregnation with K, the best catalytic activity was observed for the K/Cu-Mn-O catalyst with a Cu/Mn ratio of 1:2 and surface concentration of doping K 7.03% (7.4 mg/g). The composition and the structure of the catalyst were comprehensively characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and Brunauer-Emmett-Teller. The results showed that the potassium doping improved the adsorption ability of catalyst, and promoted the formation of the nitrate salt, and thereby further improved the elimination rate of nitric oxide. Finally, the possible reaction mechanisms are discussed.

全文