摘要

How to control the release of drugs from pH-sensitive polymeric micelles is an issue of common concern, which is important to the effectiveness of the micelles. The components and properties of polymers can notably influence the drug distributions inside micelles which is a key factor that affects the drug release from the micelles. In this work, the dissipative particle dynamics simulation method is first used to study the structural transformation of micelles during the protonation process and the drug release process from micelles with different drug distributions. And then the effects of polymer structures, including different lengths of hydrophilic blocks, pH-sensitive blocks and hydrophobic blocks, on drug release are also studied. In the end, several corresponding design principles of pH-sensitive polymers for drug delivery are proposed according to the simulation results. This work is in favor of establishing qualitative rules for the design and optimization of congener polymers for desired drug delivery, which is of great significance to provide a potential approach for the development of new multiblock pH-sensitive polymeric micelles.