摘要

This paper presents an analytical approach to investigate the buckling and postbuckling behavior of functionally graded cylindrical shells subjected to thermal and axial compressive loads. Material properties are assumed to be temperature dependent and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of constituents. The governing equations are established within the framework of classical thin shallow shell theory taking both geometrical nonlinearity in von Karman-Donnell sense and initial imperfection into consideration. Thermal stability analysis also incorporates the effects of tangential edge constraints. A Galerkin procedure is applied to derive expressions of load-deflection relations from which the thermal buckling loads and postbuckling curves of the shells are obtained by an iteration. Effects played by material and geometrical properties, tangential stiffness, imperfection and buckling modes are discussed.

  • 出版日期2014-6