Disruption of human serum albumin fibrils by a static electric field

作者:Pandey Nitin K; Mitra Subhadeep; Chakraborty Monojit; Ghosh Sudeshna; Sen Shubhatam; Dasgupta Swagata; DasGupta Sunando
来源:Journal of Physics D: Applied Physics , 2014, 47(30): 305401.
DOI:10.1088/0022-3727/47/30/305401

摘要

Protein self-association leads to toxic filamentous plaques believed to be the key reason behind several neurodegenerative diseases. Stabilization of the fibrillar architecture is guided by several forces; primarily electrostatic, hydrophobic, and the extent of hydrogen bonding. In this study, we experimentally demonstrate, for the first time, the effect of varying static electric fields on preformed fibrils of human serum albumin (HSA) in an electrowetting on dielectric type setup using spectroscopic and microscopic techniques. We have found appreciable and continuous reduction in the beta-sheet content of HSA fibrils up to an applied field of similar to 8 x 10(6) V m(-1). The observed disruption of the fibrils has been attributed to the combined effects of electrostatic interactions and electrowetting phenomena. Kinetic studies indicate a prior intermediate formation followed by disruption of HSA fibrils after application of the electric field.

  • 出版日期2014-7-30