摘要

Phosphorus (P) is an essential element to all living cells, yet fluctuations in P concentrations are recurrent in the marine environment. Diatoms are amongst the most successful phytoplankton groups, adapting to and surviving periods of suboptimal conditions and resuming growth as soon as nutrient concentrations permit. A knowledge of the molecular underpinnings of diatom ecological success is, however, still very incomplete. By strand-specific RNA sequencing, we analyzed the global transcriptome changes of the diatom Phaeodactylum tricornutum in response to P fluctuations over a course of 8d, defining five distinct physiological states. This study reports previously unidentified genes highly responsive to P stress in P.tricornutum. Our data also uncover the complexity of the P.tricornutum P-responsive sensory and signaling system that combines bacterial two-component systems with more complex pathways reminiscent of metazoans. Finally, we identify a multitude of novel long intergenic nonprotein coding RNAs (lincRNAs) specifically responsive to P depletion, suggesting putative regulatory roles in the regulation of P homeostasis. Our work provides additional molecular insights into the resilience of diatoms and their ecological success, and opens up novel routes to address and explore the function and regulatory roles of P.tricornutum lincRNAs in the context of nutrient stress.

  • 出版日期2016-4