Competitive 1,2-C Atom Shifts in the Strained Carbene Spiro[3.3]hept-1-ylidene Explained by Distinct Ring-Puckered Conformers

作者:Rosenberg Murray G; Schrievers Theodor; Brinker Udo H*
来源:Journal of Organic Chemistry, 2016, 81(24): 12388-12400.
DOI:10.1021/acs.joc.6b02445

摘要

Spiro[3.3]hept-1-ylidene is a markedly strained carbene reaction intermediate that was generated by high-vacuum flash pyrolysis (HVFP) of the corresponding p-tosylhydrazone sodium salt. Five hydrocarbons were produced from the Bamford Stevens reactant in 82% overall yield. The carbene undergoes two [1,2]-sigmatropic rearrangements via competing 1,2-C atom shifts. Ring-contraction yields cyclopropylidenecyclobutane, while ring-expansion affords bicyclo[3.2.0]hept-1(5)-ene. The ring contraction is regiospecific despite the formation of some 1-methylenespiro[2.3]hexane. It does not originate from the carbene under HVFP conditions. Instead, it comes from a methylenecyclopropane-type rearrangement of chemically activated cydopropylidenecyclobutane. Similarly, some chemically activated bicyclo[3.2.0]hept-1(5)-ene rearranges to 1,2-dimethylenecyclopentane via electrocyclic ring-opening. Accounting for the conversion of primary products to secondary ones, relative yields indicate that ring-contraction within the carbene prevails over ring-expansion by a factor of 6.7:1. Computational chemistry was used to assess the structures, conformations, energies, strain energies, transition states, and activation energies of these rearrangements with the goal of explaining product selectivities. The dual-ringed carbene is predicted to assume four distinct geometric conformations that have a bearing on transition-state selection. The reactive cyclobutylidene units of two conformers are significantly puckered, like cyclobutylidene itself, while those of the other two are flatter. The selectivity of the title carbene is compared with that of spiro[2.3]hex-4-ylidene.

  • 出版日期2016-12-16

全文