摘要

By comparing the discontinuous Galerkin (DG) and the finite volume (FV) methods, a concept of 'static reconstruction' and 'dynamic reconstruction' is introduced for high-order numerical methods. Based on the new concept, a class of hybrid DG/FV schemes is presented for one-dimensional conservation law using a 'hybrid reconstruction' approach. In the hybrid DG/FV schemes, the lower-order derivatives of a piecewise polynomial solution are computed locally in a cell by the DG method based on Taylor basis functions (called as 'dynamic reconstruction'), while the higher-order derivatives are re-constructed by the 'static reconstruction' of the FV method, using the known lower-order derivatives in the cell itself and its adjacent neighboring cells. The hybrid DG/FV methods can greatly reduce CPU time and memory required by the traditional DG methods with the same order of accuracy on the same mesh, and they can be extended directly to unstructured and hybrid grids in two and three dimensions similar to the DG and/or FV methods. The hybrid DG/FV methods are applied to one-dimensional conservation law, including linear and non-linear scalar equation and Euler equations. In order to capture the strong shock waves without spurious oscillations, a simple shock detection approach is developed to mark 'trouble cells', and a moment limiter is adopted for higher-order schemes. The numerical results demonstrate the accuracy, and the super-convergence property is shown for the third-order hybrid DG/FV schemes. In addition, by analyzing the eigenvalues of the semi-discretized system in one dimension, we discuss the spectral properties of the hybrid DG/FV schemes to explain the super-convergence phenomenon.