摘要

Modeling the chemical erosion of carbon materials due to low-energy H+ impact is of paramount importance for the prediction of the behavior of carbon-based plasma-facing components in nuclear fusion devices. In this paper a simple general model describing both energy and temperature dependence of carbon-based chemical erosion is presented. Enlightened by Hopf's model {Hopf et al., [J. Appl. Phys. 94, 2373 (2003)}, the chemical erosion is separated into the contributions from three mechanisms: thermal chemical erosion, energetic chemical sputtering, and ion-enhanced chemical erosion. Using input from the Monte Carlo code TRIDYN, this model is able to reproduce experimental data well.