摘要

A hypertrophic scar is the result of abnormal repair of the body after trauma. Histopathologically, it is mostly the result of the excessive proliferation of fibroblasts and the accumulation of extracellular matrix. Accumulating evidence has demonstrated that long non-coding RNAs (lncRNAs) have a critical role in the regulation of gene expression and in the pathogenesis of diseases. However, the roles of lncRNAs in hypertrophic scars have remained elusive. The present study investigated the profiles of differentially expressed lncRNAs between fibroblasts derived from a hypertrophic scar and normal skin, and explored the possible mechanisms underlying the development of hypertrophic scars. Microarray data indicated that 6,104 lncRNAs and 2,952 mRNAs were differentially expressed. A set of differentially expressed transcripts as confirmed by reverse transcription-quantitative polymerase chain reaction. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed to determine the principal functions of the significantly deregulated genes. Furthermore, associated expression networks, including subgroup analysis, competing endogenous RNAs (ceRNAs) and coding-noncoding co-expression networks were constructed using bioinformatics methods. The homology between differentially expressed lncRNAs and mRNAs was assessed and two exon lncRNA were selected to explore their regulatory mechanisms. The ceRNA network inferred that NR_125715 acted as a competing endogenous RNA, bound to microRNA (miR)-141-3p, miR-200a-3p and miR-29 to regulate the expression of the miRs' targets, including transforming growth factor 2 (TGFB2). Similarly, NR_046402 acted as a competing endogenous RNA, which bound to miR-133a-3p.1 and miR-4469 to then regulate the expression of the miRs' targets, including DNA polymerase 1, catalytic subunit (POLD1). In addition, co-expression analysis indicated that the expression of lncRNAs NR_125715 and NR_046402 was correlated with that of TGFB2 and POLD1 mRNA. The identification of these differentially expressed lncRNAs in the hypertrophic scar-derived fibroblasts in the present study, may provide novel insight into the functional interactions of lncRNA, miRNA and mRNA, and lead to novel theories for the pathogenesis and treatment of hypertrophic scars.