摘要

Water quality security within water distribution systems (WDSs) has been an important issue due to their inherent vulnerability associated with contamination intrusion. This motivates intensive studies to identify optimal water quality sensor placement (WQSP) strategies, aimed to timely/effectively detect (un)intentional intrusion events. However, these available WQSP optimization methods have consistently presumed that each WDS node has an equal contamination probability. While being simple in implementation, this assumption may do not conform to the fact that the nodal contamination probability may be significantly regionally varied owing to variations in population density and user properties. Furthermore, the low computational efficiency is another important factor that has seriously hampered the practical applications of the currently available WQSP optimization approaches. To address these two issues, this paper proposes an efficient multi-objective WQSP optimization method to explicitly account for contamination probability variations. Four different contamination probability functions (CPFs) are proposed to represent the potential variations of nodal contamination probabilities within the WDS. Two real-world WDSs are used to demonstrate the utility of the proposed method. Results show that WQSP strategies can be significantly affected by the choice of the CPF. For example, when the proposed method is applied to the large case study with the CPF accounting for user properties, the event detection probabilities of the resultant solutions are approximately 65%, while these values are around 25% for the traditional approach, and such design solutions are achieved approximately 10,000 times faster than the traditional method. This paper provides an alternative method to identify optimal WQSP solutions for the WDS, and also builds knowledge regarding the impacts of different CPFs on sensor deployments.