摘要

Glycidyl methacrylate (GMA) was grafted onto micron-sized silica gel particles and the grafted particles of PGMA/SiO2 were obtained. Subsequently, a ring-opening reaction of the epoxy groups on the grafted PGMA was carried out using iminodiacetic acid ( IDAA) as a reagent, which resulted in IDAA group bonding and in the preparation of the composite chelating particles IDAA-PGMA/SiO2. In this work, the adsorption behavior and adsorption thermodynamics of IDAA-PGMA/SiO2 toward heavy metal ions and rare earth ions were investigated, and the adsorption mechanism was investigated in depth. The experimental results show that the particles IDAA-PGMA/SiO2 possess strong adsorption action for heavy metal ions and the adsorption capacity of the Pb2+ ions reached 0.235 g . g(-1). The adsorption of heavy metal ions on IDAA-PGMA/SiO2 is exothermic and is driven by enthalpy, leading to a decrease in the adsorption capacity as temperature is raised. The adsorption of rare earth ions on IDAA-PGMA/SiO2 is driven by entropy. The adsorption ability of IDAA-PGMA/SiO2 toward heavy ions is much stronger than that toward the rare earth ions.