摘要

Novel lead and copper salts based on anthraquinone, including 1,8-dihydroxyanthraquinone,1,4,5,8-tetrahydroxyanthraquinone and 1,8-dihydrox y-4,5-dinitroanthraquinone, were prepared and characterized by Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA), and X-ray fluorescence (XRF). The catalytic effects of these compounds on the decomposition of nitrocellulose (NC) and on the combustion properties of double-base (DB) and composite modified double-base (CMDB) propellants were comprehensively investigated. The results demonstrated that the burning rate is significantly increased (by 200%) in the lower pressure range (2-6 MPa) as compared to the control systems without added anthraquinone-based salts. Concurrently, the pressure exponents (n) were obviously lower, exhibiting a "wide-range plateau" combustion phenomenon in the middle-pressure region. Specifically, for the DB propellants such a plateau region extended from 10 MPa to 16 MPa for n equal to 0.10, from 10 MPa to 18 MPa for n equal to 0.11 and from 8 MPa to 18 MPa when n is 0.05. In the case of RDX-CMDB propellants, the plateau was found to be in the range 6-18 MPa, with n in the range 0.16-0.27, depending on the type of catalyst, in contrast to the reference CMDB sample, which was characterized by n equal to 0.7 for the same pressure range.