摘要

Alternating current field measurement (ACFM) probes are used to detect and size cracks in a range of engineering components. Crack sizing for this, and other electromagnetic (EM) based NDT systems, relies on relating the signal obtained to the actual crack length. For cracks that do not propagate vertically, such as rolling contact fatigue cracks in rails, predicting the crack depth, which determines the rail depth to be removed by grinding, requires an assumed propagation angle into the material as no method to determine crack vertical angle from the EM signals has been reported. This paper discusses the relationship between ACFM signals and propagation angles for surface-breaking cracks using a COMSOL model. The Bx signal accurately predicts the crack pocket length when the vertical angle is 30-90 degrees but underestimates pocket length for shallower angles, e.g. a 50% underestimate is seen for a 3.2 mm pocket length crack propagating at a vertical angle of 10 degrees. A new measure, the Bz trough-peak ratio, is proposed to determine the crack vertical angle. These are verified by experimental measurements using a commercial ACFM pencil probe for cracks with a range of vertical angles between 10 degrees and 90 degrees.

  • 出版日期2015-11