摘要

Recent empirical studies have revealed that travel time variability plays an important role in travelers%26apos; route choice decisions. To simultaneously account for both reliability and unreliability aspects of travel time variability, the concept of mean-excess travel time (METT) was recently proposed as a new risk-averse route choice criterion. In this paper, we extend the mean-excess traffic equilibrium model to include heterogeneous risk-aversion attitudes and elastic demand. Specifically, this model explicitly considers (1) multiple user classes with different risk-aversions toward travel time variability when making route choice decisions under uncertainty and (2) the elasticity of travel demand as a function of METT when making travel choice decisions under uncertainty. This model is thus capable of modeling travelers%26apos; heterogeneous risk-averse behaviors with both travel choice and route choice considerations. The proposed model is formulated as a variational inequality problem and solved via a route-based algorithm using the modified alternating direction method. Numerical analyses are also provided to illustrate the features of the proposed model and the applicability of the solution algorithm.