摘要

This study employs two statistical learning algorithms (Support Vector Machine (SVM) and Relevance Vector Machine (RVM)) for the determination of ultimate bearing capacity (qu) of shallow foundation on cohesionless soil. SVM is firmly based on the theory of statistical learning, uses regression technique by introducing varepsilon-insensitive loss function. RVM is based on a Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. It also gives variance of predicted data. The inputs of models are width of footing (B), depth of footing (D), footing geometry (L/B), unit weight of sand (?) and angle of shearing resistance (?). Equations have been developed for the determination of qu of shallow foundation on cohesionless soil based on the SVM and RVM models. Sensitivity analysis has also been carried out to determine the effect of each input parameter. This study shows that the developed SVM and RVM are robust models for the prediction of qu of shallow foundation on cohesionless soil.

  • 出版日期2012-1