摘要

This article reports the behaviors of bone marrow -derived mesenchymal stem cells (BMSCs) in the direct culture with four Mg-4Zn-xSr alloys (x = 0.15, 0.5, 1.0, 1.5 wt %), designated as ZSr41A, B, C, and D, respectively; and a systematic comparison on the degradation of the ZSr41 alloys and their biological impact in the direct culture with different cell types in their respective media. The direct culture method, in which cells are seeded directly onto the surface of the sample, was used to investigate cellular responses at the cell-biomaterial interface in vitro. The results showed that BMSCs adhered and remained viable on the surfaces of all ZSr41 alloys, but the faster degrading ZSr41A and ZSr41B alloys showed a significantly lower amount of viable BMSCs adhered to their surfaces. Moreover, BMSCs adhered to the culture plate surrounding the samples were unaffected by the solubilized degradation products from the ZSr41 alloys. The results from the comparison study showed that the in vitro degradation rates of Mg-based biomaterials in different culture systems might be mostly affected by media buffer capacity (i.e., HCO3- concentration), and to a lesser extent, (D)-glucose concentration. The comparison study also indicated that BMSCs were more robust than H9 human embryonic stem cells and human umbilical vein endothelial cells for screening the cytocompatibility of Mg-based biomaterials. In general, the adhesion and viability of BMSCs at the cell -material interface were inversely proportional to the alloy degradation rates. This study presented a clinically relevant in vitro culture system for screening bioresorbable alloys in direct culture, and provided valuable guidelines for determining the degradation rates of Mg-based biomaterials.