A novel bottom-up process to produce nanoparticles containing protein and peptide for suspension in hydrofluoroalkane propellants

作者:Tan, Yinhe; Yang, Zhiwen; Peng, Xinsheng; Xin, Feng; Xu, Yuehong; Feng, Min; Zhao, Chunshun; Hu, Haiyan; Wu, Chuanbin*
来源:International Journal of Pharmaceutics, 2011, 413(1-2): 167-173.
DOI:10.1016/j.ijpharm.2011.03.069

摘要

To overcome the disadvantages of microemulsion and nanoprecipitation methods to produce protein-containing nanoparticles, a novel bottom-up process was developed to produce nanoparticles containing the model protein lysozyme. The nanoparticles were generated by freeze-drying a solution of lysozyme, lecithin and lactose in tert-butyl alcohol (TBA)/water co-solvent system and washing off excess lecithin in lyophilizate by centrifugation. Formulation parameters such as lecithin concentration in organic phase, water content in TBA/water co-solvent, and lactose concentration in water were optimized so as to obtain desired nanoparticles with retention of the bioactivity of lysozyme. Based on the results, 24.0% (w/v) of lecithin, 37.5% (v/v) of water content, and 0.56% (w/v) of lactose concentration were selected to generate spherical nanoparticles with approximately 200 nm in mean size, 0.1 in polydispersity index (PI), and 99% retained bioactivity of lysozyme. These nanoparticles rinsed with ethanol containing dipalmitoylphosphatidylcholine (DPPC), Span 85 or oleic acid (3%, w/v) could readily be dispersed in HFA 134a to form a stable suspension with good redispersibility and 98% retained bioactivity of Iysozyme. The study indicates there is a potential to produce pressed metered dose inhaler (pMDI) formulations containing therapeutic protein and peptide nanoparticles.