摘要

This study investigated, on both metric and centimetric scales, mercury (Hg) transformations and dynamics within a water column chemocline of a tropical reservoir. Data collected included conventional measurement of Hg in water samples, diffusive gradients in thin-films (DGT) assessments, and thermodynamic speciation modeling in order to portray the biogeochemical processes that control elemental Hg (EM) and dissolved monomethylated Hg (MeHgD) production. The primary contribution of this study is demonstration that the DGT technique can be successfully implemented to examine labile Hg compound mobilization, and estimation of how local substratum facilitates Hg reduction and methylation reactions. DGT profiles with a resolution of 1 cm revealed a fine sequence of prominent Hg reduction/oxidation reactions at the chemocline level. This is interpreted as a manifestation of both: i) kinetic effects capable of arising inside the diffusive layer of DGTdevices, and ii) extremely localized production or consumption of reducible and methylable Hg. Another key result obtained at the metric scale is that EM and MeHgD production at a water column chemocline are intricately linked, as both are fueled by nutrients episodically released during the decomposition of falling epilimnetic organic particles or inhibited by dissolved organic matter and inorganic compounds continuously transported from the deeper monimolimnion. Finally, it is worth noting that the chemocline acts as an accumulation and recycling domain for falling MeHg-loaclecl organic particles, whereas the high primary productivity layer in the epilimnion represents the principal reactor with respect to Hg methylation and reduction.

  • 出版日期2018-7-15