At-line coupling of UPLC to chip-electrospray-FTICR-MS

作者:Li Xiaojing; Fekete Agnes; Englmann Matthias; Frommberger Moritz; Lv Shuiyuan; Chen Guonan; Schmitt Kopplin Philippe*
来源:Analytical and Bioanalytical Chemistry, 2007, 389(5): 1439-1446.
DOI:10.1007/s00216-007-1524-4

摘要

Since highly sensitive on-line coupling of UPLC with FTICR-MS is technically infeasible due to their different scan rates, at-line coupling of these techniques was developed for rapid analysis. To enable cutting of one peak of the chromatogram into one fraction, several conditions and relationships were investigated, e.g. the optimum volume of the inserted delay loop, the relationship between retention time, loop outlet drop speed, individual drop volume versus mobile phase composition under constant speed, and linear solvent strength gradient elution modes. Good and reproducible results were achieved applying UPLC as an efficient separation and fast fractionation tool before the FTICR-MS measurements. A chip-based nanoelectrospray ionization system was employed which was perfectly suited to handling the small-volume fractions and was thus chosen for the at-line coupling. The method was initially applied to spiked extracts of cell-free bacterial culture supernatants in which bacterial signalling compounds, namely N-acyl homoserine lactones (AHL), were detected. Good reproducibility and high recovery was observed. Afterwards, a culture supernatant of Erwinia sp. JX3.2, a putative AHL producer, was investigated and N-hexanoyl-homoserine lactone was determined as a possible signalling molecule. More reliable assignments were achieved by use of at-line coupling of UPLC and FTICR-MS compared with off-line measurements.