摘要

This study investigates the effects of air-sea interaction upon simulated tropical climatology, focusing on the boreal summer mean precipitation and the embedded intra-seasonal oscillation (ISO) signal. Both the daily coupling of ocean-atmosphere and the diurnal variation of sea surface temperature (SST) at every time step by accounting for the ocean mixed layer and surface-energy budget at the ocean surface are considered. The ocean-atmosphere coupled model component of the global/regional integrated model system has been utilized. Results from the coupled model show better precipitation climatology than those from the atmosphere-only model, through the inclusion of SST-cloudiness-precipitation feedback in the coupled system. Cooling the ocean surface in the coupled model is mainly responsible for the improved precipitation climatology, whereas neither the coupling itself nor the diurnal variation in the SST influences the simulated climatology. However, the inclusion of the diurnal cycle in the SST shows a distinct improvement of the simulated ISO signal, by either decreasing or increasing the magnitude of spectral powers, as compared to the simulation results that exclude the diurnal variation of the SST in coupled models.

  • 出版日期2014-3