Multiple charge domains model for the lock-on effect in GaAs power photoconductive switches

作者:Tian Liqiang*; Shi Wei
来源:Journal of Physics D: Applied Physics , 2008, 41(11): 115107.
DOI:10.1088/0022-3727/41/11/115107

摘要

This paper reports that the lock-on field of semi-insulating (SI) GaAs photoconductive semiconductor switches (PCSSs) was measured under different bias voltages. Based on the experimental results and the transferred-electron effect, a model for the lock-on effect in GaAs PCSSs is proposed. It is shown that the charge domain with an ultrahigh electric field is due to a high photogenerated carrier density, which gives rise to intensive impact ionization accompanied by electron-hole recombination radiation within the domain. Since new domains can be nucleated uninterruptedly by the carriers generated by absorption of recombination radiation, the forefront domain crosses the switch at a speed alternating between the photon velocity and the carrier saturated drift velocity, which makes the observed velocity of carriers larger than the saturated drift velocity. The lock-on field results from the fixed number of a moving train of avalanching charge domains, the steady-state domains electric fields and the steadfast external electric field of the domains. The recovery of the lock-on effect is caused by domain quenching. The calculations agree with the experimental results. Moreover, the analytical results indicate that SI-GaAs PCSS is essentially a type of photo-activated charge domain device.