摘要

A hybrid simulated annealing algorithm based on a novel immune mechanism is proposed for the job shop scheduling problem with the objective of minimizing total weighted tardiness. The proposed immune procedure is built on the following fundamental idea: the bottleneck jobs existing in each scheduling instance generally constitute the key factors in the attempt to improve the quality of final schedules, and thus, the sequencing of these jobs needs more intensive optimization. To quantitatively describe the bottleneck job distribution, we design a fuzzy inference system for evaluating the bottleneck level (i.e. the criticality) of each job. By combining the immune procedure with a simulated annealing algorithm, we design a hybrid optimization algorithm which is subsequently tested on a number of job shop instances. Computational results for different-sized instances show that the proposed hybrid algorithm performs effectively and converges fast to satisfactory solutions.