Nitrogen-enriched ordered mesoporous carbons through direct pyrolysis in ammonia with enhanced capacitive performance

作者:Wang Xiqing; Liu Chen Guang; Neff David; Fulvio Pasquale F; Mayes Richard T; Zhamu Aruna; Fang Qing; Chen Guorong; Meyer Harry M; Jang Bor Z; Dai Sheng*
来源:Journal of Materials Chemistry A, 2013, 1(27): 7920-7926.
DOI:10.1039/c3ta11342f

摘要

Self-assembly of phenolic resins and a Pluronic block copolymer via the soft-template method enables the formation of well-organized polymeric mesostructures, providing an easy way for preparation of ordered mesoporous carbons (OMCs). However, direct synthesis of OMCs with high nitrogen content remains a significant challenge due to the limited availability of nitrogen precursors capable of co-polymerizing with phenolic resins without deterioration of the order of mesostructural arrangement and significant diminishment of nitrogen content during carbonization. In this work, we demonstrate pyrolysis of the soft-templated polymeric composites in ammonia as a direct, facile way towards nitrogen-enriched OMCs (N-OMCs). This approach does not require any nitrogen-containing carbon precursors or post-treatment, but takes advantage of the preferential reaction and/ or replacement of oxygen with nitrogen species, generated by decomposition of ammonia at elevated temperatures, in oxygen-rich polymers during pyrolysis. It combines carbonization, nitrogen functionalization, and activation into one simple process, generating N-OMCs with a uniform pore size, large surface area (up to 1400 m(2) g(-1)), and high nitrogen content (up to 9.3 at%). More importantly, the ordering of the meso-structure is well-maintained as long as the heating temperature does not exceed 800 degrees C, above which (e. g., 850 degrees C) a slight structural degradation is observed. When being used as electrode materials for symmetric electric double layer capacitors, N-OMCs demonstrate enhanced capacitance (6.8 mu F cm(-2) vs. 3.2 mu F cm(-2)) and reduced ion diffusion resistance compared to the non-NH3-treated sample.

  • 出版日期2013

全文