摘要

There has been an increasing application of water hydraulics in industries due to growing concern on the environmental, health and safety issues. The fault diagnosis of water hydraulic motor is important for improving water hydraulic system reliability and performance. In this paper, fault diagnosis of water hydraulic motor in water hydraulic system is investigated based on adaptive wavelet analysis. A novel method for modelling the vibration signal based on the adaptive wavelet transform (AWT) is proposed. The linear combination of wavelets is introduced as wavelet itself and adapted for the particular vibration signal, which goes beyond adapting parameters of a fixed-shape wavelet. The AWT procedure based on the parametric optimisation by genetic algorithm (GA) is developed. The model-based method by AWT is applied to extract the features in the fault diagnosis of the water hydraulic motor. This technique for denoising the corrupted simulation signal shows that it can improve the signal-to-noise ratio of the vibration signal. The results of the experimental signal demonstrate the characteristic vibration signal details in fine resolution. The magnitude plots of the continuous wavelet transform (CWT) show the characteristic signal's energy in time and frequency domain which can be used as feature values for fault diagnosis of water hydraulic motor.

  • 出版日期2006-11
  • 单位南阳理工学院