摘要

Purpose: The goal of this study was to amplify the effects of magnetization exchange between g-adenosine triphosphate (ATP) and inorganic phosphate (Pi) for evaluation of ATP synthesis rates in human skeletal muscle. Methods: The strategy works by simultaneously inverting the P-31 resonances of phosphocreatine (PCr) and ATP using a wide bandwidth, adiabatic inversion radiofrequency pulse followed by observing dynamic changes in intensity of the noninverted Pi signal versus the delay time between the inversion and observation pulses. This band inversion technique significantly delays recovery of gamma-ATP magnetization; consequently, the exchange reaction, Pi <-> gamma-ATP, is readily detected and easily analyzed. Results: The ATP synthesis rate measured from high-quality spectral data using this method was 0.073 +/- 0.011 s(-1) in resting human skeletal muscle (N = 10). The T-1 of Pi was 6.93 +/- 1.90 s, consistent with the intrinsic T-1 of Pi at this field. The apparent T-1 of gamma-ATP was 4.07 +/- 0.32 s, about two-fold longer than its intrinsic T-1 due to storage of magnetization in PCr. Conclusion: Band inversion provides an effective method to amplify the effects of magnetization transfer between gamma-ATP and Pi. The resulting data can be easily analyzed to obtain the ATP synthesis rate using a two-site exchange model.

  • 出版日期2015-12