Angular and polarization response of multimode sensors with resistive-grid absorbers

作者:Kusaka Akito*; Wollack Edward J; Stevenson Thomas R
来源:Journal of the Optical Society of America A-Optics Image Science and Vision, 2014, 31(7): 1557-1576.
DOI:10.1364/JOSAA.31.001557

摘要

High-sensitivity receiver systems with near-ideal polarization sensitivity are highly desirable for development of millimeter and submillimeter radio astronomy. Multimoded bolometers provide a unique solution to achieve such sensitivity, for which hundreds of single-mode sensors would otherwise be required. The primary concern in employing such multimoded sensors for polarimetery is the control of the polarization systematics. In this work, we examine the angular- and polarization-dependent absorption pattern of a thin resistive grid or membrane, which models an absorber used for a multimoded bolometer. The result shows that a freestanding thin resistive absorber with a surface resistivity of eta/2, where eta is the impedance of free space, attains a beam pattern with equal E- and H-plane responses, leading to zero cross-polarization. For a resistive-grid absorber, the condition is met when a pair of grids is positioned orthogonal to each other and both have a resistivity of eta/2. When a reflective backshort termination is employed to improve absorption efficiency, the cross-polar level can be suppressed below -30 dB if acceptance angle of the sensor is limited to less than or similar to 60 degrees. The small cross-polar systematics have even-parity patterns and do not contaminate the measurements of odd-parity polarization patterns, for which many of the recent instruments for cosmic microwave background are designed. Underlying symmetry that suppresses these cross-polar systematics is discussed in detail. The estimates and formalism provided in this work offer key tools in the design consideration of the instruments using the multimoded polarimeters.

  • 出版日期2014-7-1