摘要

Nonclassical polarization properties of a quantum field propagating through non-Kolmogorov turbulence are studied in a turbulent atmosphere paraxial channel. The analytic equation for the quantum degree of polarization of linearly polarized light is obtained. It is shown by numerical simulation that the polarization fluctuations of the quantum field are a function of the turbulent strength, the photon number, the propagation distance, the fractal constant alpha and the coherence length rho(0).