BN对VGG神经网络的影响研究

作者:陈强普; 桑军; 项志立; 罗红玲; 郭沛; 蔡斌
来源:合肥工业大学学报(自然科学版), 2018, 41(01): 35-39.

摘要

文章针对在训练目前卷积神经网络中较为主流的深度神经网络VGG网络模型时调参艰难、收敛较慢的问题,引入批归一化(batch normalization,BN)进行改进。批归一化能提高网络训练的初始学习率上限,同时加快模型收敛速度。相关实验结果表明,在端对端训练或者微调神经网络过程中应用批归一化,能较好地达到优化目的,同时指出在VGG网络中所有激活层前进行批归一化能得到最好的效果。另外VGG网络的优化方法会影响到批归一化,使用改进的基于动量的随机梯度下降能使网络训练时的波动更小。