摘要

Despite the prevalence of thin section analysis in studies of Quaternary sediments, there are limitations associated with the production of thin sections (sediment modification) and the inherently 2D view that a thin section affords. Non-destructive and rapid scanning technologies such as X-ray computed microtomography (mu CT) enable material samples to be visualised and analysed in 3D. In a Quaternary context, however, such techniques are in their infancy. This paper assesses the optimum approach to mu CT analysis of Quaternary sediments, applying the method on Lateglacial glaciolacustrine varves from Glen Roy, Scotland. Scan datasets are examined at each stage of the thin section process and comparisons are made between 2D mu CT images and thin sections for the recognition of 2D sediment features, with further appraisal of 3D models to identify 3D sediment structures. Comparable sediment features are observed in 2D mu CT images and thin sections, however, the mu CT imaging resolution determines the precision of microfacies descriptions. Additional 3D structures are distinguished from volumetric models that are otherwise impossible to identify in thin section slides. These 3D structures can locally alter sediment properties (e.g. layer thickness) as seen in 2D thin sections and/or digital images, although such variation cannot be detected with these media. It has been demonstrated that clear benefits exist in understanding the 3D structure of Quaternary sediments, both prior to thin-sectioning to avoid complicating (e.g. deformation) structures, and after thin-sectioning to establish the complex 3D context of 2D datasets. It is recommended that mu CT and thin section techniques are applied in parallel in future studies, which will profit from the integration of 'true' 3D data. It is also advised that samples are scanned soon after field sampling, due to the significant modification of in situ sediment structures that can occur during thin section processing.

  • 出版日期2015-4-15