摘要

A new mixed-interpolation finite element method is presented for the two-dimensional numerical simulation of incompressible magnetohydrodynamic (MHD) flows which involve convective heat transfer. The proposed method applies the nodal shape functions, which are locally defined in nine-node elements, for the discretization of the Navier-Stokes and energy equations, and the vector shape functions, which are locally defined in four-node elements, for the discretization of the electromagnetic field equations. The use of the vector shape functions allows the solenoidal condition on the magnetic field to be automatically satisfied in each four-node element. In addition, efficient approximation procedures for the calculation of the integrals in the discretized equations are adopted to achieve high-speed computation. With the use of the proposed numerical scheme, MHD channel flow and MHD natural convection under a constant applied magnetic field are simulated at different Hartmann numbers. The accuracy and robustness of the method are verified through these numerical tests in which both undistorted and distorted meshes are employed for comparison of numerical solutions. Furthermore, it is shown that the calculation speed for the proposed scheme is much higher compared with that for a conventional numerical integration scheme under the condition of almost the same memory consumption.

  • 出版日期2017-4-20

全文