Deep conduit flow in karst aquifers revisited

作者:Kaufmann Georg*; Gabrovsek Franci; Romanov Douchko
来源:Water Resources Research, 2014, 50(6): 4821-4836.
DOI:10.1002/2014WR015314

摘要

Caves formed in soluble rocks such as limestone, anhydrite, or gypsum are efficient drainage paths for water moving through the aquifer from the surface of the host rock toward a resurgence. The formation of caves is controlled by the physical solution through dissociation of the host rock by water or by the chemical solution through reactions of the host rock with water enriched with carbon dioxide. Caves as large underground voids are simply the end-member of secondary porosity and conductivity characterizing the aquifer. Caves and their relation to a present or past base level are found both close to a past or present water table (water table caves) and extending far below a past or present water table (bathy-phreatic caves). One explanation for this different speleogenetic evolution is the structural control: fractures and bedding partings are preferentially enlarged around more prominent faults, thus the fracture density in the host rock controls the speleogenetic evolution. This widely accepted explanation can be extended by adding other controls, e. g., a hydraulic control: as temperature generally increases with depth, density and viscosity of water change, and particularly the reduction of viscosity due to the increase in temperature enhances flow. This hypothesis was proposed by Worthington (2001, 2004) as a major controlling factor for the evolution of deep bathy-phreatic caves. We compare the efficiency of structural and hydraulic control on the evolution of a cave passage by numerical means, adding a third control, the chemical control to address the change in solubility of the circulating water with depth. Our results show that the increase in flow through deep bathy-phreatic passages due to the decrease in viscosity is by far outweighted by effects such as the decrease in fracture width with depth due to lithostatic stress and the decrease in solubility with depth. Hence, the existence of deep bathy-phreatic cave passages is more likely to be controlled by the structural effect of prominent faults.

  • 出版日期2014-6