摘要

Low clouds strongly impact the radiation budget of the climate system, but their simulation in most GCMs has remained a challenge, especially over the subtropical stratocumulus region. Assuming a Gaussian distribution for the subgrid-scale total water and liquid water potential temperature, a new statistical cloud scheme is proposed and tested in NCAR Community Atmospheric Model version 5 (CAM5). The subgrid-scale variance is diagnosed from the turbulent and shallow convective processes in CAM5. The approach is able to maintain the consistency between cloud fraction and cloud condensate and thus alleviates the adjustment needed in the default relative humidity-based cloud fraction scheme. Short-term forecast simulations indicate that low cloud fraction and liquid water content, including their diurnal cycle, are improved due to a proper consideration of subgrid-scale variance over the southeastern Pacific Ocean region. Compared with the default cloud scheme, the new approach produced the mean climate reasonably well with improved shortwave cloud forcing (SWCF) due to more reasonable low cloud fraction and liquid water path over regions with predominant low clouds. Meanwhile, the SWCF bias over the tropical land regions is also alleviated. Furthermore, the simulated marine boundary layer clouds with the new approach extend further offshore and agree better with observations. The new approach is able to obtain the top of atmosphere (TOA) radiation balance with a slightly alleviated double ITCZ problem in preliminary coupled simulations. This study implies that a close coupling of cloud processes with other subgrid-scale physical processes is a promising approach to improve cloud simulations.