High-Resolution Magnetic Field Mapping System With an NMR Probe

作者:Li Frank X*; Voccio John P; Sammartino Michael; Jalali Jalal; Ahn Min Cheol; Hahn Seungyong; Bascunan Juan; Iwasa Yukikazu
来源:IEEE Transactions on Applied Superconductivity, 2016, 26(4): 9001104.
DOI:10.1109/TASC.2016.2535253

摘要

This paper presents a high-resolution magnetic field mapping system in development that is capable of collecting spatial magnetic field data for NMR magnets. An NMR probe was designed and built with a resonant frequency of 5.73 MHz. The measured Q-factor of the NMR probe is similar to 191 with a half-power bandwidth in the range of 5.72-5.75MHz. An RF continuous-wave technique with magnetic field modulation was utilized to detect the power dispersion of water molecules. The zero-crossing frequency of the NMR dispersion signal corresponds to the magnetic field at the center of the water sample. An embedded system was developed to sweep the frequency and record the reflected RF power simultaneously. A numerically controlled digital oscillator is able to provide a precise frequency step as small as 0.02 Hz, which is equivalent to 4.7 e-7 mT for hydrogen atoms. An RF preamplifier was built to supply up to 4 W of RF power to a bidirectional coupler. The coupler supplies RF power to the NMR probe and channels reflect the RF power back to the detection circuit, which detects the reflected RF power from the NMR probe during the frequency sweep. The homogeneity of an NMR magnet can be determined by magnetic field data.

  • 出版日期2016-6
  • 单位MIT

全文