摘要

An impedance-based approach for analyzing an axial rod with shear-type damping layer treatment is proposed. The rod and shear-type damping layer are regarded as two subsystems and both impedances are calculated analytically. The system impedance can be obtained through the impedance coupling between the host rod and the damping layer. The shear-type damping layer is regarded as a shear spring with complex shear modulus. Under the traditional model, the damping coefficient diminishes with the increasing frequency. The paper develops two shear-type damping layer models, including the single degree-of-freedom (SDOF) model and continuous model to predict the behavior of the damping layer. Both damping layer models are compared with the traditional model and the system responses from these models are validated by finite element method (FEM) code COMSOL Multiphysics. Results show that the damping coefficients of both the traditional shear-spring model and SDOF model diminish as the increasing frequency so that the system responses are discrepant with that from COMSOL in the high frequency range. On the other hand, the system response from the continuous model is consistent with that from COMSOL in the full frequency range. Hence, the continuous damping layer model can predict a correct damping coefficient in the high frequency range and this property can be also employed to improve the analysis of the constrained-layer damping treated structures. Finally, the modal loss factor and fundamental frequency of the system with respect to different damping layer thicknesses are presented using the developed approach. [DOI: 10.1115/1.4007263]

  • 出版日期2013-2

全文