摘要

The direct effects of sulfate aerosol, dust aerosol, carbonaceous aerosol, and total combined aerosols on the tropopause height are simulated with the Community Atmospheric Model version 3.1 (CAM3.1). A decrease of global mean tropopause height induced by sulfate, carbonaceous aerosol, and total combined aerosols is found, and a tropopause height increase is induced by dust aerosol. Sulfate aerosol decreases the tropospheric temperature and increases the stratospheric temperature. These effects cause a decrease in the height of the tropopause. In contrast, carbonaceous and total combined aerosols increase both the tropospheric and the stratospheric temperatures, and they also cause a decrease in the height of the tropopause. The changes in the tropopause height show highly statistically significant correlations with the changes in the tropospheric and stratospheric temperatures. The changes in the tropospheric and stratospheric temperatures are related to the changes in the radiative heat rate, cloud cover, and latent heat, but none of these factors absolutely dominate the temperature change.

全文