摘要

Herein, graphite nanosheets (GN) were first prepared through simple liquid-phase exfoliation of graphite powder in N, N-dimethylacetamide (DMAC). After then, ultrasmall Cu-based metal organic frame (HKUST-1) nanoparticles (less than 5 nm) were in-situ anchored on the surface of graphite nanosheets with high degree of dispersion. Due to the intrinsic structural advantages of the as-synthesized HKUST-1 nanoparticles decorated graphite nanosheets (HKUST-1/GN) hybrids, including superior electron transfer ability and the greatly enhanced adsorption property, HKUST-1/GN shows excellent electrochemical sensing performance toward DNA damage biomarker 8-hydroxy-2'-deoxyguanosine with fast detection speed (similar to 240 s), wide linear window (10 nM-1 mu M), high sensitivity (346857 mu A mM(-1) cm(-2)), low detection limit (similar to 2.5 nM), and good reproducibility. As a result, a highly sensitive electrochemical sensing platform for the detection of DNA damage biomarker 8-hydroxy-2'-deoxyguanosine was fabricated basing the as-prepared HKUST-1/GN hybrids. What is more, the developed electrochemical method was successfully used for the detection of real samples and exhibited satisfied result.