摘要

Interactive forces between competition and habitat filtering drive many biogeographic patterns over evolutionary time scales. However, the responsiveness of assemblages to these two forces is highly influenced by spatial scale, forming complex patterns of niche separation. We explored these spatial dependencies by quantifying the influence of phylogeny and functional traits in shaping present day native terrestrial mammal assemblages at multiple scales, principally by identifying the spatial scales at which niche evolution operates. We modelled the distribution of 53 native terrestrial mammal species across New South Wales, Australia. Using predicted distributions, we estimated the range overlap between each pair of species at increasing grain sizes (similar to 0.8, 5.1, 20, 81, 506, 2,025, 8,100 km(2)). We employed a decision tree to identify how interactions among functional traits and phylogenetic relatedness translated to levels of sympatry at increasing spatial scales. We found that Australian terrestrial mammals displayed phylogenetic over-dispersion that was inversely related to spatial scale, suggesting that ecological processes were more influential than biogeographic sympatry patterns in defining assemblages of species. While the contribution of phylogenetic relatedness to patterns of co-occurrence decreased as spatial scale increased, the reverse was true for habitat preferences. At the same time, functional traits also operated at different scales, as dietary preferences dominated at local spatial scales (%26lt; 10 km(2)) while body mass has a stronger effect at larger spatial scales. Our findings show that ecological and evolutionary processes operate at different scales and that Australian terrestrial mammals diverged slower along their micro-scale niche compared to their macro-scale niche. By combining phylogenetic and niche methods through the modelling of species distributions, we assessed whether specific traits were related to a particular niche. More importantly, conducting multi-scale spatial analysis avoids categorical assignment of traits-to-niches, providing a clearer relationship between traits and a species ecological niche and a more precise scaling for the axes of niche evolution.

  • 出版日期2013-11