摘要

When studying the tribological behaviors of a Cu-based friction pair in different lubrication regimes, calculation of the real contact area of asperity contacts is crucial but difficult. In this work, a mixed lubrication model in plane contacts is developed, and pin-on-disc tests are carried out. The real contact area ratio, load sharing ratio, and friction coefficient are investigated. Effects of sliding velocity, temperature, and pressure are considered. The results show that when the maximum contact area ratio is about 14.6%, the load sharing ratio of asperity contacts is about 95%. The friction coefficient obviously increases from less than 0.04 to about 0.15as the regime changes from hydrodynamic to boundary lubrication. Asperities have a significant influence on the local lubrication of a Cu-based friction pair, and the action of hydrodynamic pressure cannot be ignored.