摘要

The coding sequences of the Rhizopus delemar lipase and prolipase were altered by oligonucleotide-directed mutagenesis to introduce amino acid substitutions. The resulting mutant enzymes, synthesized by the bacterial host Escherichia coli BL21 (DE3), were tested for their ability to hydrolyze the triglycerides triolein (TO), tricaprylin (TC) and tributyrin (TB). Mutagenesis and lipase gene expression were carried out using plasmid vectors derived from previously described recombinant plasmids [Joerger and Haas (1993) Lipids 28, 81-88] by introduction of the origin of replication of bacteriophage f1. Substitution of threonine 83 (thr83), a residue thought to be involved in oxyanion binding, by alanine essentially eliminated lipolytic activity toward all substrates examined (TB, TO and TC). Replacement of thr83 with serine caused from two- to sevenfold reductions in the activity toward these substrates. Introduction of tryptophan (trp) at position 89, where such a residue is found in closely related fungal lipases, reduced the specific activity toward the three triglyceride substrates, For the mutagenesis of residues in the predicted acyl chain binding groove, mutagenic primers were designed to cause the replacement of a specific codon within the prolipase gene with codons for all other amino acids. Phenylalanine 95 (phe95), phe112, valine 206 (val206) and val209, were targeted. A phenotypic screen was successfully employed to identify cells producing prolipase with altered preference for olive oil, TC or TB. In assays involving equimolar mixtures of the three triglycerides, a prolipase with a phe95 --> aspartate mutation showed an almost twofold increase in the relative activity toward TC. Substitution of trp for phe112 caused an almost threefold decrease in the relative preference for TC, but elevated relative TB hydrolysis. Replacement of val209 with trp resulted in an enzyme with a two- and fourfold enhanced preference for TC and TB, respectively.

  • 出版日期1994-6

全文